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Multinuclear transition metal complexes often exhibit unusual
reactivities that are not found with mononuclear complexes and
are attributed to the cooperativity of multiple metal centers.1 A
particular example is the diverse reactivity of multiruthenium
polyhydride complexes, containing only C5Me5 (Cp*) as auxiliary
ligands, toward a variety of substrates, which has been developed
and recently reviewed by Suzuki et al.2 Among the many fascinating
transformations, the reaction of (Cp*)3Ru3H5 with cyclopentadiene
(C5H6) leading to formation of the trinuclear 2-methylruthenacy-
clopentadiene at ambient temperature2,3 (see Scheme 1) has attracted
significant interest. It has been argued that this reaction constitutes
the first example of selective C-C bond activation4 by three
supposedly cooperating metal centers. Despite the substantial
experimental effort,2,3 the mechanism of this reaction remains
unclear. Therefore, we undertook a density functional (B3LYP)5

exploration of the mechanism of the reaction of a model complex
(Cp)3Ru3H5 (A1 in Scheme 1) with C5H6. On the basis of the
computational6,7 results, we propose a multistep mechanism for this
reaction and highlight its most interesting aspects: the direct
involvement of all three metal centers and two cluster hydrides,
which characterizes the reactivity of this triruthenium complex as
versatile and cooperative.

The proposed mechanism (Scheme 1) is divided into two
parts. Part A connects the reactants,A1 + C5H6, to the model
of the experimentally observed intermediate,A13 + H2, and is
slightly endothermic. This part can occur via two distinct path-
ways, associative and dissociative. The associative pathway
begins with the C5H6 coordination (+C5H6, then -H2); in con-
trast, the H2 dissociation takes place first in the dissociative path-
way (-H2, then+C5H6).8 The dissociative pathway has two steps
with high barriers: A2 f A3 (∆Gq ) +26.9 kcal/mol,∆Hq )
+27.3 kcal/mol,∆Sq ) +1.1 cal/(mol K)) andA6 + C5H6 f
A7 (∆Gq ) +25.7 kcal/mol,∆Hq ) +10.8 kcal/mol,∆Sq )
-50.1 cal/(mol K)). On the other hand, the activation param-
eters for the rate-determining step (RDS) of the associative
mechanism,A2 + C5H6 f A8, are∆Gq ) +25.9 kcal/mol,∆Hq

) +15.5 kcal/mol, and∆Sq ) -39.6 cal/(mol K). The comparison
of these results with the experimental activation parameters2

for the RDS (∆Gq ) +21.6 kcal/mol,∆Hq ) +12.7 kcal/mol,
and ∆Sq ) -30.0 cal/(mol K)) does not rule out either of the
two pathways.9 The C-C bond cleavageA12 f A13 step
(∆Gq ) +19.9 kcal/mol), which concludes Part A, is not rate-
determining.

The second part (Part B, Scheme 1) of the mechanism, the
conversion of the intermediateA13 to the final productB8, is

slightly exothermic. We suggest that this transformation occurs via
two sequential C(sp3)-H bond formation steps (A13 f B1 and
B2 f B3) followed by C(sp3)-H and C(sp2)-H bond cleavage
steps (B5 f B6 and B7 f B8). Although the lability of C-H
bonds in certain transition metal complexes is well established,10

the “catalytic” involvement of the two cluster hydrides in the
transformation of the C5H6 moiety proposed here is novel11 and
quite remarkable.

Another inspiring computational result is the further support for
the notion of cooperation2,12between three Ru centers in a multistep
transformation. For instance, in the transition stateTS-B5-B6
(Figure 1), the Ru3 center assists the C-H bond activation after
the C-C bond has been cleaved on the Ru1 center. The cooperative
involvement of the three Ru centers in activations of C-C and
C-H bonds, as well as in agostic andπ interactions with the C5Hn

fragment at various stages of Part B of our mechanism, is evident
from Scheme 1.

In summary, we propose a detailed mechanism for the com-
plex reaction of ruthenacyclopentadiene formation3 that involves
direct assistance by two hydride and three Ru centers. We plan
to present a more detailed discussion of our results in the near
future, and we hope that our findings contribute to the understand-
ing of multinuclear, polyhydride transition metal clusters reac-
tivity.

† Emory University.
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Figure 1. The optimized structure of transition stateTS-B5-B6, and
selected interatomic distances, in Å. The reaction coordinate is depicted
with the arrows at the atoms. The atoms of the spectator Cp ligands are
represented by dots and are connected by thin lines.
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Scheme 1. The Gibbs Free Energy Profile (kcal/mol, 298 K, 1 atm) along the Proposed Mechanism for the Reaction Ru3H5(Cp)3 + C5H6
a

a The spectator Cp ligand on each Ru is omitted. The models of the experimentally observed2,3 species are outlined: reactant,A1, intermediate,A13,
product,B8. The B3LYP Gibbs free energies are in kcal/mol, relative to separatedA1 and C5H6. See Supporting Information for computational details. The
transition state connecting speciesA5 andA6 has not been located but is anticipated to be less than 5 kcal/mol higher than either minimum.
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